Transcriptomic evidence for an energetically advantageous relationship between Syntrophomonas wolfei and Methanothrix soehngenii

Author:

Besteman Maaike S.1ORCID,Doloman Anna1ORCID,Sousa Diana Z.12ORCID

Affiliation:

1. Laboratory of Microbiology Wageningen University & Research Wageningen The Netherlands

2. Centre for Living Technologies EWUU Alliance Utrecht The Netherlands

Abstract

AbstractSyntrophic interactions are key in anaerobic food chains, facilitating the conversion of complex organic matter into methane. A typical example involves acetogenic bacteria converting fatty acids (e.g., butyrate and propionate), a process thermodynamically reliant on H2 consumption by microorganisms such as methanogens. While most studies focus on H2‐interspecies transfer between these groups, knowledge on acetate cross‐feeding in anaerobic systems is lacking. This study investigated butyrate oxidation by co‐cultures of Syntrophomonas wolfei and Methanospirillum hungatei, both with and without the addition of the acetate scavenger Methanothrix soehngenii. Growth and gene expression patterns of S. wolfei and M. hungatei were followed in the two conditions. Although butyrate consumption rates remained constant, genes in the butyrate degradation pathway of S. wolfei were less expressed in the presence of M. soehngenii, including genes involved in reverse electron transport. Higher expression of a type IV‐pili operon in S. wolfei hints to the potential for direct interspecies electron transfer between S. wolfei and M. soehngenii and an energetically advantageous relationship between the two microorganisms. Overall, the presence of the acetate scavenger M. soehngenii positively influenced the energy metabolism of S. wolfei and highlighted the relevance of including acetate scavengers when investigating syntrophic fatty acid degradation.

Funder

Soehngen Institute of Anaerobic Microbiology

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3