Dehalococcoides mccartyi strain NIT01 grows more stably in vessels made of pure titanium rather than the stainless alloy SUS304

Author:

Asai Masaki1,Morita Yuki1,Meng Lingyu1ORCID,Miyazaki Hidetoshi2,Yoshida Naoko1ORCID

Affiliation:

1. Department of Civil Engineering Nagoya Institute of Technology Nagoya Japan

2. Department of Physical Science and Engineering Nagoya Institute of Technology Nagoya Japan

Abstract

AbstractAdvances in many isolation studies have revealed that pure Dehalococcoides grow stably, although the large‐scale pure cultivation of Dehalococcoides has yet to be established. In this study, 7 L‐culturing of Dehalococcoides mccartyi strain NIT01 was first performed using vessels made of glass and stainless alloy SUS304. All batches cultured in the glass vessel successfully dechlorinated >95% of 1 mM trichloroethene (TCE) to ethene (ETH), whereas only 5 out of 13 batches cultured in the SUS304 vessel did the same. The difference in dechlorination efficiency suggested the possible inhibition of dechlorination by SUS304. Also, the strain NIT01 showed long delays in dechlorination with pieces of SUS316, steel, and a repeatedly used SUS304, but not with titanium. The repeatedly used SUS304 cracked and increased the Fe2+ concentration to ≥76 μM. Dechlorination by this strain was also inhibited with ≥1000 μM Fe2+ and ≥23 μM Cr3+ but not with ≤100 μM Ni2+, suggesting that Cr3+ eluted from solid stainless alloys inhibited the dechlorination. Culturing in a titanium vessel instead of a stainless alloy showed the complete dechlorination of 1 mM TCE within 12–28 days with a growth yield of 2.7 × 107 cells/μmol‐released Cl, even after repeating use of the vessels six times.

Funder

Ministry of Education, Culture, Sports, Science and Technology

National Natural Science Foundation of China

Publisher

Wiley

Subject

Agricultural and Biological Sciences (miscellaneous),Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3