Continuous cultivation of the lithoautotrophic nitrate‐reducing Fe(II)‐oxidizing culture KS in a chemostat bioreactor

Author:

Bayer Timm1,Tomaszewski Elizabeth J.1,Bryce Casey2,Kappler Andreas13,Byrne James M.2ORCID

Affiliation:

1. Geomicrobiology Group, Center for Applied Geoscience University of Tuebingen Tuebingen Germany

2. School of Earth Sciences University of Bristol Bristol UK

3. Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection Tuebingen Germany

Abstract

AbstractLaboratory‐based studies on microbial Fe(II) oxidation are commonly performed for 5–10 days in small volumes with high substrate concentrations, resulting in geochemical gradients and volumetric effects caused by sampling. We used a chemostat to enable uninterrupted supply of medium and investigated autotrophic nitrate‐reducing Fe(II)‐oxidizing culture KS for 24 days. We analysed Fe‐ and N‐speciation, cell‐mineral associations, and the identity of minerals. Results were compared to batch systems (50 and 700 mL—static/shaken). The Fe(II) oxidation rate was highest in the chemostat with 7.57 mM Fe(II) d−1, while the extent of oxidation was similar to the other experimental setups (average oxidation of 92% of all Fe(II)). Short‐range ordered Fe(III) phases, presumably ferrihydrite, precipitated and later goethite was detected in the chemostat. The 1 mM solid phase Fe(II) remained in the chemostat, up to 15 μM of reactive nitrite was measured, and 42% of visualized cells were partially or completely mineral‐encrusted, likely caused by abiotic oxidation of Fe(II) by nitrite. Despite (partial) encrustation, cells were still viable. Our results show that even with similar oxidation rates as in batch cultures, cultivating Fe(II)‐oxidizing microorganisms under continuous conditions reveals the importance of reactive nitrogen intermediates on Fe(II) oxidation, mineral formation and cell–mineral interactions.

Funder

Argonne National Laboratory

Deutsche Forschungsgemeinschaft

UK Research and Innovation

Publisher

Wiley

Subject

Agricultural and Biological Sciences (miscellaneous),Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3