Pre‐treatment with Trichoderma viride: Towards a better understanding of its consequences for anaerobic digestion

Author:

Markt Rudolf1ORCID,Prem Eva Maria1ORCID,Lackner Nina1,Mutschlechner Mira1,Illmer Paul1ORCID,Wagner Andreas Otto1ORCID

Affiliation:

1. Department of Microbiology Universität Innsbruck Innsbruck Austria

Abstract

AbstractUnderstanding and optimising biological pre‐treatment strategies for enhanced bio‐methane production is a central aspect in second‐generation biofuel research. In this regard, the application of fungi for pre‐treatment seems highly promising; however, understanding the mode of action is crucial. Here, we show how aerobic pre‐treatment of crystalline cellulose with the cellulolytic Trichoderma viride affects substrate degradability during mesophilic, anaerobic digestion. It could be demonstrated that fungal pre‐treatment resulted in a slightly reduced substrate mass. Nevertheless, no significant impact on the overall methane yield was found during batch fermentation. Short chain organic acids accumulation, thus, overall degradation dynamics including methane production kinetics were affected by the pre‐treatment as shown by Gompertz modelling. Finally, 16S rRNA amplicon sequencing followed by ANCOM‐BC resulted in up to 53 operative taxonomic units including fermentative, syntrophic and methanogenic taxa, whereby their relative abundances were significantly affected by fungal pre‐treatment depending on the duration of the pre‐treatment. The results demonstrated the impact of soft rot fungal pre‐treatment of cellulose on subsequent anaerobic cellulose hydrolysis as well as on methanogenic activity. To the best of our knowledge, this is the first study to investigate the direct causal effects of pre‐treatment with T. viride on basic but crucial anaerobic digestion parameters in a highly standardised approach.

Funder

Austrian Science Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3