Affiliation:
1. Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences Johann Wolfgang Goethe University Frankfurt Germany
2. Göttingen Genomics Laboratory, Institute for Microbiology and Genetics Georg August University Göttingen Germany
Abstract
AbstractTo inactivate the Wood–Ljungdahl pathway in the acetogenic model bacterium Acetobacterium woodii, the genes metVF encoding two of the subunits of the methylene‐tetrahydrofolate reductase were deleted. As expected, the mutant did not grow on C1 compounds and also not on lactate, ethanol or butanediol. In contrast to a mutant in which the first enzyme of the pathway (hydrogen‐dependent CO2 reductase) had been genetically deleted, cells were able to grow on fructose, albeit with lower rates and yields than the wild‐type. Growth was restored by addition of an external electron sink, glycine betaine + CO2 or caffeate. Resting cells pre‐grown on fructose plus an external electron acceptor fermented fructose to two acetate and four hydrogen, that is, performed hydrogenogenesis. Cells pre‐grown under fermentative conditions on fructose alone redirected carbon and electrons to form lactate, formate, ethanol as well as hydrogen. Apparently, growth on fructose alone induced enzymes for mixed acid fermentation (MAF). Transcriptome analyses revealed enzymes potentially involved in MAF and a quantitative model for MAF from fructose in A. woodii is presented.
Funder
H2020 European Research Council
Subject
Agricultural and Biological Sciences (miscellaneous),Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献