Activity and abundance of methanotrophic bacteria in a northern mountainous gradient of wetlands

Author:

Jensen Sigmund1,Siljanen Henri M.P.2ORCID,Dörsch Peter3

Affiliation:

1. Department of Biological Sciences University of Bergen Bergen Norway

2. Department of Environmental and Biological Sciences University of Eastern Finland Kuopio Finland

3. Norwegian University of Life Sciences Faculty for Environmental Sciences and Natural Resource Management Norway

Abstract

AbstractMethane uptake and diversity of methanotrophic bacteria was investigated across six hydrologically connected wetlands in a mountainous forest landscape upstream of lake Langtjern, southern Norway. From floodplain through shrubs, forest and sedges to a Sphagnum covered site, growing season CH4 production was insufficiently consumed to balance release into the atmosphere. Emission increased by soil moisture ranging 0.6–6.8 mg CH4 m−2 h−1. Top soils of all sites consumed CH4 including at the lowest 78 ppmv CH4 supplied, thus potentially oxidizing 17–51 nmol CH4 g−1 dw h−1, with highest Vmax 440 nmol g−1 dw h−1 under Sphagnum and lowest Km 559 nM under hummocked Carex. Nine genera and several less understood type I and type II methanotrophs were detected by the key functional gene pmoA involved in methane oxidation. Microarray signal intensities from all sites revealed Methylococcus, the affiliated Lake Washington cluster, Methylocaldum, a Japanese rice cluster, Methylosinus, Methylocystis and the affiliated Peat264 cluster. Notably enriched by site was a floodplain Methylomonas and a Methylocapsa‐affiliated watershed cluster in the Sphagnum site. The climate sensitive water table was shown to be a strong controlling factor highlighting its link with the CH4 cycle in elevated wetlands.

Funder

Norges Forskningsråd

Publisher

Wiley

Subject

Agricultural and Biological Sciences (miscellaneous),Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3