Potential for homoacetogenesis via the Wood–Ljungdahl pathway in Korarchaeia lineages from marine hydrothermal vents

Author:

Vulcano Francesca1ORCID,Hribovšek Petra12ORCID,Denny Emily Olesin13ORCID,Steen Ida H.1ORCID,Stokke Runar1ORCID

Affiliation:

1. Department of Biological Sciences, Centre for Deep Sea Research University of Bergen Bergen Norway

2. Department of Earth Science, Centre for Deep Sea Research University of Bergen Bergen Norway

3. Department of Informatics, Computational Biological Unit University of Bergen Bergen Norway

Abstract

AbstractThe Wood–Ljungdahl pathway (WLP) is a key metabolic component of acetogenic bacteria where it acts as an electron sink. In Archaea, despite traditionally being linked to methanogenesis, the pathway has been found in several Thermoproteota and Asgardarchaeota lineages. In Bathyarchaeia and Lokiarchaeia, its presence has been linked to a homoacetogenic metabolism. Genomic evidence from marine hydrothermal genomes suggests that lineages of Korarchaeia could also encode the WLP. In this study, we reconstructed 50 Korarchaeia genomes from marine hydrothermal vents along the Arctic Mid‐Ocean Ridge, substantially expanding the Korarchaeia class with several taxonomically novel genomes. We identified a complete WLP in several deep‐branching lineages, showing that the presence of the WLP is conserved at the root of the Korarchaeia. No methyl‐CoM reductases were encoded by genomes with the WLP, indicating that the WLP is not linked to methanogenesis. By assessing the distribution of hydrogenases and membrane complexes for energy conservation, we show that the WLP is likely used as an electron sink in a fermentative homoacetogenic metabolism. Our study confirms previous hypotheses that the WLP has evolved independently from the methanogenic metabolism in Archaea, perhaps due to its propensity to be combined with heterotrophic fermentative metabolisms.

Funder

Trond Mohn stiftelse

Publisher

Wiley

Subject

Agricultural and Biological Sciences (miscellaneous),Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3