Arthropods are kin: Operationalizing Indigenous data sovereignty to respectfully utilize genomic data from Indigenous lands

Author:

Hutchins Leke1ORCID,Mc Cartney Ann2,Graham Natalie1ORCID,Gillespie Rosemary1ORCID,Guzman Aidee3

Affiliation:

1. Department of Environmental Sciences Policy and Management University of California Berkeley Berkeley California USA

2. UC Santa Cruz Genomics Institute, University of California Santa Cruz Santa Cruz California USA

3. Department of Ecology and Evolutionary Biology University of California Irvine Irvine California USA

Abstract

AbstractIndigenous peoples have cultivated biodiverse agroecosystems since time immemorial. The rise of metagenomics and high‐throughput sequencing technologies in biodiversity studies has rapidly expanded the scale of data collection from these lands. A respectful approach to the data life cycle grounded in the sovereignty of indigenous communities is imperative to not perpetuate harm. In this paper, we operationalize an indigenous data sovereignty (IDS) framework to outline realistic considerations for genomic data that span data collection, governance, and communication. As a case study for this framework, we use arthropod genomic data collected from diversified and simplified farm sites close to and far from natural habitats within a historic Kānaka ʻŌiwi (Indigenous Hawaiian) agroecosystem. Diversified sites had the highest Operational Taxonomic Unit (OTU) richness for native and introduced arthropods. There may be a significant spillover effect between forest and farm sites, as farm sites near a natural habitat had higher OTU richness than those farther away. We also provide evidence that management factors such as the number of Polynesian crops cultivated may drive arthropod community composition. Through this case study, we emphasize the context‐dependent opportunities and challenges for operationalizing IDS by utilizing participatory research methods, expanding novel data management tools through the Local Contexts Hub, and developing and nurturing community partnerships—all while highlighting the potential of agroecosystems for arthropod conservation. Overall, the workflow and the example presented here can help researchers take tangible steps to achieve IDS, which often seems elusive with the expanding use of genomic data.

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3