Sampling effect in predicting the evolutionary response of populations to climate change

Author:

Aguirre‐Liguori Jonás A.12ORCID,Morales‐Cruz Abraham3,Gaut Brandon S.3ORCID,Ramírez‐Barahona Santiago1ORCID

Affiliation:

1. Departamento de Botánica Instituto de Biología Universidad Nacional Autónoma de México (UNAM) Ciudad de México Mexico

2. Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias Universidad Autónoma de Yucatán Mérida Mexico

3. Department of Ecology and Evolutionary Biology University of California, Irvine Irvine California USA

Abstract

AbstractGenomic data and machine learning approaches have gained interest due to their potential to identify adaptive genetic variation across populations and to assess species vulnerability to climate change. By identifying gene–environment associations for putatively adaptive loci, these approaches project changes to adaptive genetic composition as a function of future climate change (genetic offsets), which are interpreted as measuring the future maladaptation of populations due to climate change. In principle, higher genetic offsets relate to increased population vulnerability and therefore can be used to set priorities for conservation and management. However, it is not clear how sensitive these metrics are to the intensity of population and individual sampling. Here, we use five genomic datasets with varying numbers of SNPs (NSNPs = 7006–1,398,773), sampled populations (Npop = 23–47) and individuals (Nind = 185–595) to evaluate the estimation sensitivity of genetic offsets to varying degrees of sampling intensity. We found that genetic offsets are sensitive to the number of populations being sampled, especially with less than 10 populations and when genetic structure is high. We also found that the number of individuals sampled per population had small effects on the estimation of genetic offsets, with more robust results when five or more individuals are sampled. Finally, uncertainty associated with the use of different future climate scenarios slightly increased estimation uncertainty in the genetic offsets. Our results suggest that sampling efforts should focus on increasing the number of populations, rather than the number of individuals per populations, and that multiple future climate scenarios should be evaluated to ascertain estimation sensitivity.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3