GeneMiner: A tool for extracting phylogenetic markers from next‐generation sequencing data

Author:

Xie Pulin1ORCID,Guo Yongling1,Teng Yue2,Zhou Wenbin3ORCID,Yu Yan1

Affiliation:

1. Key Laboratory of Bio‐Resources and Eco‐Environment of Ministry of Education, College of Life Sciences Sichuan University Chengdu China

2. State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing China

3. Department of Biology University of North Carolina at Chapel Hill Chapel Hill North Carolina USA

Abstract

AbstractThe advancement of next‐generation sequencing (NGS) technologies has been revolutionary for the field of evolutionary biology. This technology has led to an abundance of available genomes and transcriptomes for researchers to mine. Specifically, researchers can mine for various types of molecular markers that are vital for phylogenetic, evolutionary and ecological studies. Numerous tools have been developed to extract these molecular markers from NGS data. However, due to an insufficient number of well‐annotated reference genomes for non‐model organisms, it remains challenging to obtain these markers accurately and efficiently. Here, we present GeneMiner, an improved and expanded version of our previous tool, Easy353. GeneMiner combines the reference‐guided de Bruijn graph assembly with seed self‐discovery and greedy extension. Additionally, it includes a verification step using a parameter‐bootstrap method to reduce the pitfalls associated with using a relatively distant reference. Our results, using both experimental and simulation data, showed GeneMiner can accurately acquire phylogenetic molecular markers for plants using transcriptomic, genomic and other NGS data. GeneMiner is designed to be user‐friendly, fast and memory‐efficient. Further, it is compatible with Linux, Windows and macOS. All source codes are publicly available on GitHub (https://github.com/sculab/GeneMiner) and Gitee (https://gitee.com/sculab/GeneMiner) for easy accessibility and transparency.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3