Affordable de novo generation of fish mitogenomes using amplification‐free enrichment of mitochondrial DNA and deep sequencing of long fragments

Author:

Ramón‐Laca Ana12ORCID,Gallego Ramón34ORCID,Nichols Krista M.3

Affiliation:

1. CICOES, University of Washington and Northwest Fisheries Science Center, National Marine Fisheries Service Seattle WA USA

2. Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC) Madrid Spain

3. Conservation Biology Division Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration Seattle Washington USA

4. Departamento de Biología, Facultad de Ciencias Universidad Autónoma de Madrid Madrid Spain

Abstract

AbstractBiomonitoring surveys make use of metabarcoding tools to describe the community composition. These studies match their sequencing results against public genomic databases to identify the species. However, mitochondrial genomic reference data are yet incomplete, only a few genes may be available, or the suitability of existing sequence data is suboptimal for species level resolution. Here, we present a dedicated and cost‐effective workflow with no DNA amplification for generating complete fish mitogenomes for the purpose of strengthening fish mitochondrial databases. Two different strategies using long fragment sequencing with Oxford Nanopore technology coupled with mitochondrial DNA enrichment were used. One where the enrichment is achieved by preferential isolation of mitochondria followed by DNA extraction and nuclear DNA depletion (“mitoenrichment”). A second enrichment approach takes advantage of the CRISPR Cas9 targeted scission on previously dephosphorylated DNA (“targeted mitosequencing”). The sequencing results varied between tissue, species, and integrity of the DNA. The mitoenrichment method yielded 0.17%–12.33% of sequences on target and a mean coverage ranging from 74.9 to 805‐fold. The targeted mitosequencing experiment from native genomic DNA yielded 1.83%–55% of sequences on target and a 38 to 2123‐fold mean coverage. These produced complete mitogenomes of species with homopolymeric regions, tandem repeats, and gene rearrangements. We demonstrate that deep sequencing of long fragments of native fish DNA can be achieved with low computational resources in a cost‐effective manner, opening the discovery of mitogenomes of nonmodel or understudied fish taxa to a broad range of laboratories worldwide.

Funder

National Oceanic and Atmospheric Administration

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3