Morphological and taxonomic diversity of mesozooplankton is an important driver of carbon export fluxes in the ocean

Author:

Perhirin Margaux1ORCID,Gossner Hannah2,Godfrey Jessica2,Johnson Rodney2,Blanco‐Bercial Leocadio2ORCID,Ayata Sakina‐Dorothée13ORCID

Affiliation:

1. Sorbonne Université, UMR 7159 CNRS‐IRD‐MNHN, LOCEAN‐IPSL Paris France

2. Bermuda Institute of Ocean Sciences Arizona State University St. Georges Bermuda

3. Institut universitaire de France (IUF) Paris France

Abstract

AbstractMesozooplankton is a very diverse group of small animals ranging in size from 0.2 to 20 mm not able to swim against ocean currents. It is a key component of pelagic ecosystems through its roles in the trophic networks and the biological carbon pump. Traditionally studied through microscopes, recent methods have been however developed to rapidly acquire large amounts of data (morphological, molecular) at the individual scale, making it possible to study mesozooplankton using a trait‐based approach. Here, combining quantitative imaging with metabarcoding time‐series data obtained in the Sargasso Sea at the Bermuda Atlantic Time‐series Study (BATS) site, we showed that organisms' transparency might be an important trait to also consider regarding mesozooplankton impact on carbon export, contrary to the common assumption that just size is the master trait directing most mesozooplankton‐linked processes. Three distinct communities were defined based on taxonomic composition, and succeeded one another throughout the study period, with changing levels of transparency among the community. A co‐occurrences' network was built from metabarcoding data revealing six groups of taxa. These were related to changes in the functioning of the ecosystem and/or in the community's morphology. The importance of Diel Vertical Migration at BATS was confirmed by the existence of a group made of taxa known to be strong migrators. Finally, we assessed if metabarcoding can provide a quantitative approach to biomass and/or abundance of certain taxa. Knowing more about mesozooplankton diversity and its impact on ecosystem functioning would allow to better represent them in biogeochemical models.

Funder

Agence Nationale de la Recherche

National Science Foundation

Simons Foundation

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3