Molecular sexing of birds using quantitative PCR (qPCR) of sex‐linked genes and logistic regression models

Author:

Petrou Eleni L.1ORCID,Scott Laura C.1ORCID,McKeeman Cherie M.1ORCID,Ramey Andrew M.1ORCID

Affiliation:

1. U.S. Geological Survey Alaska Science Center Anchorage Alaska USA

Abstract

AbstractThe ability to sex individuals is an important component of many behavioural and ecological investigations and provides information for demographic models used in conservation and species management. However, many birds are difficult to sex using morphological characters or traditional molecular sexing methods. In this study, we developed probabilistic models for sexing birds using quantitative PCR (qPCR) data. First, we quantified distributions of gene copy numbers at a set of six sex‐linked genes, including the sex‐determining gene DMRT1, for individuals across 17 species and seven orders of birds (n = 150). Using these data, we built predictive logistic models for sex identification and tested their performance with independent samples from 51 species and 13 orders (n = 209). Models using the two loci most highly correlated with sex had greater accuracy than models using the full set of sex‐linked loci, across all taxonomic levels of analysis. Sex identification was highly accurate when individuals to be assigned were of species used in model building. Our analytical approach was widely applicable across diverse neognath bird lineages spanning millions of years of evolutionary divergence. Unlike previous methods, our probabilistic framework incorporates uncertainty around qPCR measurements as well as biological variation within species into decision‐making rules. We anticipate that this method will be useful for sexing birds, including those of high conservation concern and/or subsistence value, that have proven difficult to sex using traditional approaches. Additionally, the general analytical framework presented in this paper may also be applicable to other organisms with sex chromosomes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3