On the causes, consequences, and avoidance of PCR duplicates: Towards a theory of library complexity

Author:

Rochette Nicolas C.12,Rivera‐Colón Angel G.2ORCID,Walsh Jessica3,Sanger Thomas J.4,Campbell‐Staton Shane C.1,Catchen Julian M.2ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology Princeton University Princeton New Jersey USA

2. Department of Evolution, Ecology, and Behavior University of Illinois at Urbana‐Champaign Urbana Illinois USA

3. Floragenex, Inc. Portland Oregon USA

4. Department of Biology Loyola University Chicago Chicago Illinois USA

Abstract

AbstractLibrary preparation protocols for most sequencing technologies involve PCR amplification of the template DNA, which open the possibility that a given template DNA molecule is sequenced multiple times. Reads arising from this phenomenon, known as PCR duplicates, inflate the cost of sequencing and can jeopardize the reliability of affected experiments. Despite the pervasiveness of this artefact, our understanding of its causes and of its impact on downstream statistical analyses remains essentially empirical. Here, we develop a general quantitative model of amplification distortions in sequencing data sets, which we leverage to investigate the factors controlling the occurrence of PCR duplicates. We show that the PCR duplicate rate is determined primarily by the ratio between library complexity and sequencing depth, and that amplification noise (including in its dependence on the number of PCR cycles) only plays a secondary role for this artefact. We confirm our predictions using new and published RAD‐seq libraries and provide a method to estimate library complexity and amplification noise in any data set containing PCR duplicates. We discuss how amplification‐related artefacts impact downstream analyses, and in particular genotyping accuracy. The proposed framework unites the numerous observations made on PCR duplicates and will be useful to experimenters of all sequencing technologies where DNA availability is a concern.

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3