A cost‐effective blood DNA methylation‐based age estimation method in domestic cats, Tsushima leopard cats (Prionailurus bengalensis euptilurus) and Panthera species, using targeted bisulphite sequencing and machine learning models

Author:

Qi Huiyuan1ORCID,Lim Qi Luan1,Kinoshita Kodzue1,Nakajima Nobuyoshi2,Inoue‐Murayama Miho1

Affiliation:

1. Wildlife Research Center Kyoto University Kyoto Japan

2. Biodiversity Division National Institute for Environmental Studies Tsukuba Ibaraki Japan

Abstract

AbstractIndividual age can be used to design more efficient and suitable management plans in both in situ and ex situ conservation programmes for targeted wildlife species. DNA methylation is a promising marker of epigenetic ageing that can accurately estimate age from small amounts of biological material, which can be collected in a minimally invasive manner. In this study, we sequenced five targeted genetic regions and used 8–23 selected CpG sites to build age estimation models using machine learning methods at only about $3–7 per sample. Blood samples of seven Felidae species were used, ranging from small to big, and domestic to endangered species: domestic cats (Felis catus, 139 samples), Tsushima leopard cats (Prionailurus bengalensis euptilurus, 84 samples) and five Panthera species (96 samples). The models achieved satisfactory accuracy, with the mean absolute error of the most accurate models recorded at 1.966, 1.348 and 1.552 years in domestic cats, Tsushima leopard cats and Panthera spp. respectively. We developed the models in domestic cats and Tsushima leopard cats, which were applicable to individuals regardless of health conditions; therefore, these models are applicable to samples collected from individuals with diverse characteristics, which is often the case in conservation. We also showed the possibility of developing universal age estimation models for the five Panthera spp. using only two of the five genetic regions. We do not recommend building a common age estimation model for all the target species using our markers, because of the degraded performance of models that included all species.

Funder

Environmental Restoration and Conservation Agency

Japan Society for the Promotion of Science

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3