Assembly‐free quantification of vagrant DNA inserts

Author:

Becher Hannes1ORCID,Nichols Richard A.2

Affiliation:

1. Institute of Genetics and Cancer, University of Edinburgh Edinburgh UK

2. School of Biological and Behavioural Sciences Queen Mary University of London London UK

Abstract

AbstractInserts of DNA from extranuclear sources, such as organelles and microbes, are common in eukaryote nuclear genomes. However, sequence similarity between the nuclear and extranuclear DNA, and a history of multiple insertions, make the assembly of these regions challenging. Consequently, the number, sequence and location of these vagrant DNAs cannot be reliably inferred from the genome assemblies of most organisms. We introduce two statistical methods to estimate the abundance of nuclear inserts even in the absence of a nuclear genome assembly. The first (intercept method) only requires low‐coverage (<1×) sequencing data, as commonly generated for population studies of organellar and ribosomal DNAs. The second method additionally requires that a subset of the individuals carry extranuclear DNA with diverged genotypes. We validated our intercept method using simulations and by re‐estimating the frequency of human NUMTs (nuclear mitochondrial inserts). We then applied it to the grasshopper Podisma pedestris, exceptional for both its large genome size and reports of numerous NUMT inserts, estimating that NUMTs make up 0.056% of the nuclear genome, equivalent to >500 times the mitochondrial genome size. We also re‐analysed a museomics data set of the parrot Psephotellus varius, obtaining an estimate of only 0.0043%, in line with reports from other species of bird. Our study demonstrates the utility of low‐coverage high‐throughput sequencing data for the quantification of nuclear vagrant DNAs. Beyond quantifying organellar inserts, these methods could also be used on endosymbiont‐derived sequences. We provide an R implementation of our methods called “vagrantDNA” and code to simulate test data sets.

Funder

Queen Mary University of London

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3