Validation of machine learning approach for direct mutation rate estimation

Author:

Burda Katarzyna1,Konczal Mateusz1ORCID

Affiliation:

1. Evolutionary Biology Group, Faculty of Biology Adam Mickiewicz University Poznań Poland

Abstract

AbstractMutations are the primary source of all genetic variation. Knowledge about their rates is critical for any evolutionary genetic analyses, but for a long time, that knowledge has remained elusive and indirectly inferred. In recent years, parent–offspring comparisons have yielded the first direct mutation rate estimates. The analyses are, however, challenging due to high rate of false positives and no consensus regarding standardized filtering of candidate de novo mutations. Here, we validate the application of a machine learning approach for such a task and estimate the mutation rate for the guppy (Poecilia reticulata), a model species in eco‐evolutionary studies. We sequenced 4 parents and 20 offspring, followed by screening their genomes for de novo mutations. The initial large number of candidate de novo mutations was hard‐filtered to remove false‐positive results. These results were compared with mutation rate estimated with a supervised machine learning approach. Both approaches were followed by molecular validation of all candidate de novo mutations and yielded similar results. The ML method uniquely identified three mutations, but overall required more hands‐on curation and had higher rates of false positives and false negatives. Both methods concordantly showed no difference in mutation rates between families. Estimated here the guppy mutation rate is among the lowest directly estimated mutation rates in vertebrates; however, previous research has also found low estimated rates in other teleost fishes. We discuss potential explanations for such a pattern, as well as future utility and limitations of machine learning approaches.

Funder

Narodowe Centrum Nauki

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3