Plant‐derived environmental DNA complements diversity estimates from traditional arthropod monitoring methods but outperforms them detecting plant–arthropod interactions

Author:

Weber Sven1ORCID,Stothut Manuel1ORCID,Mahla Lisa1,Kripp Alanah2,Hirschler Lena1,Lenz Nina1,Junker Anneke1,Künzel Sven3,Krehenwinkel Henrik1ORCID

Affiliation:

1. Department of Biogeography Trier University Trier Germany

2. iES Landau, Institute for Environmental Sciences University of Kaiserslautern‐Landau Landau in der Pfalz Germany

3. Max Planck Institute for Evolutionary Biology Plön Germany

Abstract

AbstractOur limited knowledge about the ecological drivers of global arthropod decline highlights the urgent need for more effective biodiversity monitoring approaches. Monitoring of arthropods is commonly performed using passive trapping devices, which reliably recover diverse communities, but provide little ecological information on the sampled taxa. Especially the manifold interactions of arthropods with plants are barely understood. A promising strategy to overcome this shortfall is environmental DNA (eDNA) metabarcoding from plant material on which arthropods leave DNA traces through direct or indirect interactions. However, the accuracy of this approach has not been sufficiently tested. In four experiments, we exhaustively test the comparative performance of plant‐derived eDNA from surface washes of plants and homogenized plant material against traditional monitoring approaches. We show that the recovered communities of plant‐derived eDNA and traditional approaches only partly overlap, with eDNA recovering various additional taxa. This suggests eDNA as a useful complementary tool to traditional monitoring. Despite the differences in recovered taxa, estimates of community α‐ and β‐diversity between both approaches are well correlated, highlighting the utility of eDNA as a broad scale tool for community monitoring. Last, eDNA outperforms traditional approaches in the recovery of plant‐specific arthropod communities. Unlike traditional monitoring, eDNA revealed fine‐scale community differentiation between individual plants and even within plant compartments. Especially specialized herbivores are better recovered with eDNA. Our results highlight the value of plant‐derived eDNA analysis for large‐scale biodiversity assessments that include information about community‐level interactions.

Funder

Deutsche Bundesstiftung Umwelt

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3