Captive rearing effects on the methylome of Atlantic salmon after oceanic migration: Sex‐specificity and intergenerational stability

Author:

Venney Clare J.12ORCID,Bouchard Raphaël12,April Julien3,Normandeau Eric12,Lecomte Laurie12,Côté Guillaume3,Bernatchez Louis12

Affiliation:

1. Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Quebec Canada

2. Département de Biologie Université Laval Québec Quebec Canada

3. Direction de l'expertise sur la faune aquatique Ministère des Forêts, de la Faune et des Parcs du Québec Québec Quebec Canada

Abstract

AbstractCaptive rearing in salmon hatcheries can have considerable impacts on both fish phenotype and fitness within a single generation, even in the absence of genetic change. Evidence for hatchery‐induced changes in DNA methylation is becoming abundant, though questions remain on the sex‐specificity of these effects, their persistence until spawning and potential for transmission to future generations. Here we performed whole genome methylation sequencing of fin tissue for 16 hatchery and 16 wild Atlantic salmon (Salmo salar) returning to spawn in the Rimouski River, Québec, Canada. We identified two cohorts of hatchery‐reared salmon through methylation analysis, one of which was epigenetically similar to wild fish, suggesting that supplementation efforts may be able to minimize the epigenetic effects of hatchery rearing. We found considerable sex‐specific effects of hatchery rearing, with few genomic regions being affected in both males and females. We also analysed the methylome of 32 F1 offspring from four groups (pure wild, pure hatchery origin and reciprocal hybrids). We found that few epigenetic changes due to parental hatchery rearing persisted in the F1 offspring though the patterns of inheritance appear to be complex, involving nonadditive effects. Our results suggest that the epigenetic effects of hatchery rearing can be minimal in F0. There may also be minimal epigenetic inheritance and rapid loss of epigenetic changes associated with hatchery rearing. However, due to sex‐specificity and nonadditive patterns of inheritance, methylation changes due to captive rearing are rather complex and the field would benefit from further research on minimizing the epigenetic effects of captive rearing in conservation efforts.

Funder

Ministère des Forêts, de la Faune et des Parcs

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3