Physiological and molecular predictors of cycling sprint performance

Author:

Galvan‐Alvarez Victor12ORCID,Gallego‐Selles Angel12ORCID,Martinez‐Canton Miriam12ORCID,Perez‐Suarez Ismael12ORCID,Garcia‐Gonzalez Eduardo12ORCID,Martin‐Rincon Marcos12ORCID,Calbet Jose A. L.123ORCID

Affiliation:

1. Department of Physical Education University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n Las Palmas de Gran Canaria Spain

2. Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n Las Palmas de Gran Canaria Spain

3. Department of Physical Performance The Norwegian School of Sport Sciences, Postboks Oslo Norway

Abstract

AbstractThe study aimed to identify novel muscle phenotypic factors that could determine sprint performance using linear regression models including the lean mass of the lower extremities (LLM), myosin heavy chain composition (MHC), and proteins and enzymes implicated in glycolytic and aerobic energy generation (citrate synthase, OXPHOS proteins), oxygen transport and diffusion (myoglobin), ROS sensing (Nrf2/Keap1), antioxidant enzymes, and proteins implicated in calcium handling. For this purpose, body composition (dual‐energy X‐ray absorptiometry) and sprint performance (isokinetic 30‐s Wingate test: peak and mean power output, Wpeak and Wmean) were measured in young physically active adults (51 males and 10 females), from which a resting muscle biopsy was obtained from the musculus vastus lateralis. Although females had a higher percentage of MHC I, SERCA2, pSer16/Thr17‐phospholamban, and Calsequestrin 2 protein expressions (all p < 0.05), and 18.4% lower phosphofructokinase 1 protein expression than males (p < 0.05), both sexes had similar sprint performance when it was normalized to body weight or LLM. Multiple regression analysis showed that Wpeak could be predicted from LLM, SDHB, Keap1, and MHC II % (R 2 = 0.62, p < 0.001), each variable contributing to explain 46.4%, 6.3%, 4.4%, and 4.3% of the variance in Wpeak, respectively. LLM and MHC II % explained 67.5% and 2.1% of the variance in Wmean, respectively (R 2 = 0.70, p < 0.001). The present investigation shows that SDHB and Keap1, in addition to MHC II %, are relevant determinants of peak power output during sprinting.

Funder

Ministerio de Economía y Competitividad

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3