Application of prime editing system to introduce TP53 R248Q hotspot mutation in acute lymphoblastic leukemia cell line

Author:

Nguyen Thao1ORCID,Aida Tomomi2,Iijima‐Yamashita Yuka3,Tamai Minori1,Nagamachi Akiko4,Kagami Keiko1,Komatsu Chiaki1,Kasai Shin1,Akahane Koshi1ORCID,Goi Kumiko1,Inaba Toshiya4,Sanada Masashi3,Inukai Takeshi1

Affiliation:

1. Department of Pediatrics, School of Medicine University of Yamanashi Chuo Japan

2. McGovern Institute for Brain Research Massachusetts Institute of Technology Cambridge Massachusetts USA

3. Department of Advanced Diagnosis Clinical Research Center, NHO Nagoya Medical Center Nagoya Japan

4. Department of Molecular Oncology and Leukemia Program Project Research Institute for Radiation Biology and Medicine, Hiroshima University Higashihiroshima Japan

Abstract

AbstractIn childhood acute lymphoblastic leukemia (ALL), TP53 gene mutation is associated with chemoresistance in a certain population of relapsed cases. To directly verify the association of TP53 gene mutation with chemoresistance of relapsed childhood ALL cases and improve their prognosis, the development of appropriate human leukemia models having TP53 mutation in the intrinsic gene is required. Here, we sought to introduce R248Q hotspot mutation into the intrinsic TP53 gene in an ALL cell line, 697, by applying a prime editing (PE) system, which is a versatile genome editing technology. The PE2 system uses an artificial fusion of nickase Cas9 and reverse‐transcriptase to directly place new genetic information into a target site through a reverse transcriptase template in the prime editing guide RNA (pegRNA). Moreover, in the advanced PE3b system, single guide RNA (sgRNA) matching the edited sequence is also introduced to improve editing efficiency. The initially obtained MDM2 inhibitor‐resistant PE3b‐transfected subline revealed disrupted p53 transactivation activity, reduced p53 target gene expression, and acquired resistance to chemotherapeutic agents and irradiation. Although the majority of the subline acquired the designed R248Q and adjacent silent mutations, the insertion of the palindromic sequence in the scaffold hairpin structure of pegRNA and the overlap of the original genomic DNA sequence were frequently observed. Targeted next‐generation sequencing reconfirmed frequent edit errors in both PE2 and PE3b‐transfected 697 cells, and it revealed frequent successful edits in HEK293T cells. These observations suggest a requirement for further modification of the PE2 and PE3b systems for accurate editing in leukemic cells.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3