Affiliation:
1. School of Engineering and Computer Science Victoria University of Wellington Wellington New Zealand
2. Institute of Psychology University of Leipzig Leipzig Germany
3. School of Psychology Victoria University of Wellington Wellington New Zealand
4. School of Electrical Engineering and Robotics Queensland University of Technology Brisbane Queensland Australia
Abstract
AbstractAutonomic nervous system (ANS) responses such as heart rate (HR) and galvanic skin responses (GSR) have been linked with cerebral activity in the context of emotion. Although much work has focused on the summative effect of emotions on ANS responses, their interaction in a continuously changing context is less clear. Here, we used a multimodal data set of human affective states, which includes electroencephalogram (EEG) and peripheral physiological signals of participants' moment‐by‐moment reactions to emotional provoking video clips and modeled HR and GSR changes using machine learning techniques, specifically, long short‐term memory (LSTM), decision tree (DT), and linear regression (LR). We found that LSTM achieved a significantly lower error rate compared with DT and LR due to its inherent ability to handle sequential data. Importantly, the prediction error was significantly reduced for DT and LR when used together with particle swarm optimization to select relevant/important features for these algorithms. Unlike summative analysis, and contrary to expectations, we found a significantly lower error rate when the prediction was made across different participants than within a participant. Moreover, the predictive selected features suggest that the patterns predictive of HR and GSR were substantially different across electrode sites and frequency bands. Overall, these results indicate that specific patterns of cerebral activity track autonomic body responses. Although individual cerebral differences are important, they might not be the only factors influencing the moment‐by‐moment changes in ANS responses.
Subject
Experimental and Cognitive Psychology,Neuropsychology and Physiological Psychology,Biological Psychiatry,Cognitive Neuroscience,Developmental Neuroscience,Endocrine and Autonomic Systems,Neurology,Experimental and Cognitive Psychology,Neuropsychology and Physiological Psychology,General Neuroscience
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献