Lower Eocene carbonate ramp clinoforms of the southern Tethys; Zagros Foreland Basin, SW Iran: Sequence stratigraphy architecture, basin physiography and carbonate factory controlling parameters

Author:

Nikfard Mohammad1ORCID

Affiliation:

1. National Iranian South Oil Company (NISOC) Ahvaz Iran

Abstract

AbstractExcellent cliff exposures in the Khush‐Ab and Chenareh anticlines (Zagros Foreland Basin, SW Iran) offer a good opportunity to document stratal geometries, paleofacies heterogeneity, depositional architecture and depositional cycles of the Lower Eocene sedimentary basin system. These unique outcrops containing six logged sections have been studied across a large‐scale transect, covering ca. 10 km of continental (Kashkan Formation), carbonate‐dominated platforms (Taleh‐Zang Formation) and submarine fan to basin‐floor settings (Amiran and Pabdeh formations). Field observations of the bedding geometries revealed a set of NE–SW oriented carbonate ramp clinoforms (clinoformal units 1–4) with sigmoidal cross‐sectional shapes and an internal fore‐stepping architecture. Based on detailed facies analysis, six facies associations (FA) were identified (FA.I to FA.VI), which are interpreted to have been deposited laterally in the continental, proximal to distal and deep‐water settings of a distally steepened carbonate ramp. According to the stratal stacking pattern, bounding surface, facies architecture and internal makeup of carbonate clinoforms, four H‐F‐cycles (cycle I–IV) corresponding to a lower hierarchical rank (fourth‐order cycle) were recognized and nested within the regressive stacking pattern (HST) of a higher hierarchical rank (third‐order sequence). These H‐F‐cycles are arranged in three segments (bottomset, foreset and topset) of each clinoformal unit. Higher rank transgressive blocks (TST) discriminated each clinoformal unit by up‐deepening sets of the H‐F‐cycle V. In total, five third‐order depositional sequences were identified. The sequence, stratigraphic framework and internal makeup of this carbonate platform indicate that these carbonate sloping successions are the type of accretionary carbonate ramp clinoforms that display an ascending ramp‐slope break trajectory. Evolutionary episodes of biogenic communities, climatic change, local tectonic movements, physical processes (e.g. waves and storms) and water depth gradient are major forcing parameters that controlled the carbonate factory and depositional geometry of this Lower Eocene succession; however, carbonate‐producing organisms and eustatic sea‐level fluctuations played the first role, and local tectonic movements in response to tectonic activities of the Zagros Foreland Basin played the second role. As a result, Taleh‐Zang carbonate platforms are rich in diverse assemblages of LBFs without fragments of coral and red algae, which appear to be a consequence of a hothouse state that diminishes the global thermal gradient, weakens pycnoclines and thereby limits the turbulence.

Publisher

Wiley

Subject

Geology

Reference99 articles.

1. Applications of nummulitids and other larger benthic foraminifera in depositional environment and sequence stratigraphy: an example from the Eocene deposits in Zagros Basin, SW Iran

2. Basic Types of Submarine Slope Curvature

3. Oligo-Miocene carbonate platform evolution in the northern margin of the Asmari intra-shelf basin, SW Iran

4. Presence of Cuvillierina (foraminifera) and its different species in eastern Iran;Babazadeh S. A.;Revue de Paléobiologie,2005

5. A new species, Cuvillierina courmae n.sp. (foraminifera), from the Lower Eocene (Cuisian) of the Gazik area (eastern Iran);Babazadeh S. A.;Geodiversitas,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3