Apoptotic bodies inhibit inflammation by PDL1–PD1‐mediated macrophage metabolic reprogramming

Author:

Jiang Tao1,Xia Yanmin12,Wang Wenzhe2,Zhao Jinbo1,Liu Wenhao1,Liu Shiyu2,Shi Songtao3,Li Bei2,He Xiaoning2,Jin Yan2ORCID

Affiliation:

1. Department of Thoracic Surgery, Tangdu Hospital Fourth Military Medical University Xi'an China

2. State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China

3. South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology Sun Yat‐sen University Guangzhou China

Abstract

AbstractApoptosis triggers immunoregulation to prevent and suppress inflammation and autoimmunity. However, the mechanism by which apoptotic cells modulate immune responses remains largely elusive. In the context of allogeneic mesenchymal stem cells (MSCs) transplantation, long‐term immunoregulation is observed in the host despite the short survive of the injected MSCs. In this study, utilizing a mouse model of acute lung injury (ALI), we demonstrate that apoptotic bodies (ABs) released by transplanted human umbilical cord MSCs (UC‐MSCs) convert the macrophages from a pro‐inflammatory to an anti‐inflammatory state, thereby ameliorating the disease. Mechanistically, we identify the expression of programmed cell death 1 ligand 1 (PDL1) on the membrane of UC‐MSCs‐derived ABs, which interacts with programmed cell death protein 1 (PD1) on host macrophages. This interaction leads to the reprogramming of macrophage metabolism, shifting from glycolysis to mitochondrial oxidative phosphorylation via the Erk‐dependent pathway in ALI. Importantly, we have reproduced the PDL1–PD1 effects of ABs on metabolic switch using alveolar macrophages from patients with ALI, suggesting the potential clinical implications of developing therapeutic strategies for the patients.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3