Deep haplotype analyses of target‐site resistance locus ACCase in blackgrass enabled by pool‐based amplicon sequencing

Author:

Kersten Sonja12ORCID,Rabanal Fernando A.2ORCID,Herrmann Johannes3ORCID,Hess Martin3,Kronenberg Zev N.4ORCID,Schmid Karl1ORCID,Weigel Detlef2ORCID

Affiliation:

1. Institute of Plant Breeding, Seed Science and Population Genetics University of Hohenheim Stuttgart Germany

2. Department of Molecular Biology Max Planck Institute for Biology Tübingen Tübingen Germany

3. Agris42 GmbH Stuttgart Germany

4. Pacific Biosciences Menlo Park California USA

Abstract

SummaryRapid adaptation of weeds to herbicide applications in agriculture through resistance development is a widespread phenomenon. In particular, the grass Alopecurus myosuroides is an extremely problematic weed in cereal crops with the potential to manifest resistance in only a few generations. Target‐site resistances (TSRs), with their strong phenotypic response, play an important role in this rapid adaptive response. Recently, using PacBio's long‐read amplicon sequencing technology in hundreds of individuals, we were able to decipher the genomic context in which TSR mutations occur. However, sequencing individual amplicons are costly and time‐consuming, thus impractical to implement for other resistance loci or applications. Alternatively, pool‐based approaches overcome these limitations and provide reliable allele frequencies, although at the expense of not preserving haplotype information. In this proof‐of‐concept study, we sequenced with PacBio High Fidelity (HiFi) reads long‐range amplicons (13.2 kb), encompassing the entire ACCase gene in pools of over 100 individuals, and resolved them into haplotypes using the clustering algorithm PacBio amplicon analysis (pbaa), a new application for pools in plants and other organisms. From these amplicon pools, we were able to recover most haplotypes from previously sequenced individuals of the same population. In addition, we analysed new pools from a Germany‐wide collection of A. myosuroides populations and found that TSR mutations originating from soft sweeps of independent origin were common. Forward‐in‐time simulations indicate that TSR haplotypes will persist for decades even at relatively low frequencies and without selection, highlighting the importance of accurate measurement of TSR haplotype prevalence for weed management.

Funder

Human Frontier Science Program

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3