Synergistic effects of a functional bacterial consortium on enhancing phenanthrene biodegradation and counteracting rare earth biotoxicity in liquid and slurry systems

Author:

Wang M.1,Liu C.1,Zhang J.1,Xiao K.1,Pan T.1ORCID

Affiliation:

1. Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering Jiangxi University of Science and Technology Ganzhou China

Abstract

Abstract The biodegradation of polycyclic aromatic hydrocarbons (PAHs) by micro-organisms in the environment is often inhibited by coexisting metal ions. The aim of this work is to study a bacterial consortium for enhancing phenanthrene biodegradation under the inhibition effect of the rare earth (RE) ions Ce3+ and Y3+. This bacterial consortium was composed of two bacteria, namely, the RE-adsorbing Bacillus subtilis MSP117 and the phenanthrene-degrading Moraxella osloensis CFP312. Ce3+ and Y3+ at the concentration of 1·15 mmol l−1 inhibited CFP312 from degrading phenanthrene but not glucose. Using glucose as a co-substrate could promote the proliferation of CFP312 but decreased phenanthrene degradation. Adsorption experiments and electron microscopy imaging showed that CFP312 had no RE ions adsorption capacity for RE ions and that RE elements could not be observed on its cell surfaces. MSP117 could adsorb 0·14 and 0·12 mmol g−1 wet cells of Ce3+ and Y3+ in aqueous solution, respectively, thus demonstrating considerable adsorption capacity. The MSP117 cell surface immobilized part of the free RE ions and reduced their bioaccessibility, thereby alleviating their biotoxic effect on phenanthrene degradation by CFP312. In liquid and slurry systems, glucose, which was used as the co-substrate of the bacterial consortium, must be kept at a low level to avoid the catabolism repression of phenanthrene degradation by CFP312.

Funder

National Natural Science Foundation of China

Jiangxi University of Science and Technology

Natural Science Foundation of Jiangxi Province

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3