Assembling genetic structure of Gardenia remyi, a critically endangered tree endemic to the Hawaiian Islands

Author:

Hansen Kristina Egholm12,Opgenorth Mike13ORCID,Flynn Tim4,Kennedy Barbara5,Rønsted Nina14ORCID,Olofsson Jill K.2ORCID,Barnes Christopher J.2ORCID

Affiliation:

1. Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark

2. Section for GeoGenetics Globe Institute University of Copenhagen Copenhagen Denmark

3. National Tropical Botanical Garden Hāna Hawaii USA

4. National Tropical Botanical Garden Kalaheo Hawaii USA

5. Bishop Museum Honolulu USA

Abstract

AbstractConservation and restoration planning of extremely rare species relies on an understanding of the genetic diversity and population dynamics within a species to overcome potential inbreeding depression. Nānū or Nāʻū (Gardenia remyi H. Mann.) is an endemic tree native to the Hawaiian Islands and is one of more than 200 endangered plant species in Hawaiʻi with less than 50 individuals remaining in the wild. Efforts to understand the genetic diversity and connectivity between wild populations are foundational to conservation management plans, however little is known of the population structure of the species. In this study we utilize double digest restriction‐site associated sequencing (ddRADSeq) on both historical herbarium specimens and samples from living ex situ collections to: (1) Test the hypothesis that we can capture genetic diversity in herbarium material of G. remyi using ddRADSeq, and (2) test the hypothesis that there are genetically distinct populations or subpopulation units among different Hawaiian islands. Usable sequencing data from thirty‐seven samples of herbarium specimens collected between 1952 and 2017 and twenty wild sourced living collection samples were obtained representing all four islands where G. remyi is known to occur. Phylogenetic and population structure analysis revealed a monophyletic ingroup and a clear division between G. remyi samples of the northern island of Kauaʻi and those from the more southeastern younger islands of Molokaʻi, Maui and Hawaiʻi islands. The Kauaʻi samples were further split into a subpopulation from Southern Kauaʻi and the subpopulations from Northern Kauaʻi. Some admixed samples were detected. Our results are consistent with subpopulations of G. remyi, which needs to be considered in future conservation planning and breeding efforts to minimize inbreeding depression.

Funder

National Tropical Botanical Garden

Publisher

Wiley

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3