Soil bulk density and altitude are primary drivers of soil water content and soil temperature in the Three Rivers Headwaters Region, China

Author:

Qiao Cui12,Zongxing Li1ORCID,Qi Feng1,Baijuan Zhang12,Juan Gui12

Affiliation:

1. Observation and Research Station of Eco‐Hydrology and National Park by Stable Isotope Tracing in Alpine Region/Gansu Qilian Mountains Ecology Research Center/Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou China

2. University of Chinese Academy of Sciences Beijing China

Abstract

AbstractSoil water content (SWC) and soil temperature (ST) are important indicators of environmental change in permafrost regions. In this study, we conducted soil sampling at 89 locations in the Three Rivers Headwaters Region (TRHR) to investigate the individual and synergistic effects of environmental factors on SWC and ST. We used multivariable regression and random forest modelling to analyse the data. The results show that SWC and ST were higher in the southeast TRHR than in the northwest and higher in surface layers than deeper soil layers. The most important factors affecting SWC in the 0–20 cm and 20–40 cm soil layers were soil bulk density and precipitation, while bulk density was the most important factor in the 40–60 cm layer, and soil bulk density and steppe vegetation were the most important factors in the 60–80 cm layer. For ST, altitude, temperature and slope gradient were the drivers in the 0–20 cm surface layer, while altitude and temperature were the most critical drivers in the 20–40 cm, 40–60 cm and 60–80 cm layers. Overall, bulk density and altitude were the key environmental factors influencing SWC and ST values, respectively. The outcomes of this study provide valuable insights into the environmental factors that impact the SWC and ST in permafrost regions, which can guide decision‐making processes for sustainable soil management in the context of climate change.

Funder

National Basic Research Program of China

Publisher

Wiley

Subject

Pollution,Soil Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3