Duration of continuous cropping with straw return affects soil organic carbon

Author:

Zhang Jun12ORCID,Zhang Fenghua12,Chang Handa12

Affiliation:

1. Agricultural College Shihezi University Shihezi China

2. Key Laboratory of Oasis Eco‐agriculture, Xinjiang Production and Construction Corps Shihezi University Shihezi China

Abstract

AbstractUnderstanding the impact of continuous cropping with straw return on soil organic matter functional groups is of great importance for maintaining chemical stabilization of SOC in arid regions. Infrared spectral characteristics of cotton field soil with different continuous cropping durations (0, 5, 10, 15 and 20 years) were determined with Fourier‐transform infrared spectroscopy for fields in Manasi River Basin, Xinjiang province, China. The effects of continuous cropping duration on the stability and chemical composition of soil organic carbon (SOC) were analysed. The results indicate an initial increase in the SOC, soil particulate organic carbon (POC), and mineral‐associated organic carbon (MOC) content of soil under continuous cropping with straw return. However, as continuous cropping duration increased, the levels of SOC, POC, and MOC in soil began to decrease. The soil POC content and POC/MOC were highest after 5 years of straw return, and started to decrease as the continuous cropping duration increased. The SOC and MOC contents were highest after 10 years of continuous cropping, and were 3.30 and 1.84 times higher than the control, respectively. As continuous cropping duration increased, the relative peak intensities for polysaccharides and aromatic groups in soil organic matter decreased, while the relative peak intensities for aliphatic compounds and hydroxyketone increased. In conclusion, continuous cropping with straw return in cotton fields promotes SOC but only for about 10 years. An increase in straw return duration boosts the degree of esterification in soil organic matter. Moreover, enhanced protection by mineral binding was observed for soil organic matter, increasing organic matter stabilization. This study aimed to provide an empirical foundation for the management of the SOC pool and the establishment of rational straw return practices for cotton fields in arid areas.

Publisher

Wiley

Subject

Pollution,Soil Science,Agronomy and Crop Science

Reference51 articles.

1. Controls on microbially regulated soil organic carbon decomposition at the regional scale

2. Structural study of humic acids during composting of activated sludge-green waste: Elemental analysis, FTIR and 13C NMR

3. Mid‐ and near‐infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols;Beáta E.;Geoderma,2006

4. Changes of organic structures of crop residues during decomposition;Cao Y. F.;Journal of Agro‐Environment Science,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3