Affiliation:
1. Centre for Mathematical Sciences Lund University Lund Sweden
2. Department of Mathematics KTH Royal Institute of Technology Stockholm Sweden
Abstract
AbstractIt is well known that each solution of the modified Korteveg–de Vries (mKdV) equation gives rise, via the Miura transformation, to a solution of the Korteveg–de Vries (KdV) equation. In this work, we show that a similar Miura‐type transformation exists also for the “good” Boussinesq equation. This transformation maps solutions of a second‐order equation to solutions of the fourth‐order Boussinesq equation. Just like in the case of mKdV and KdV, the correspondence exists also at the level of the underlying Riemann–Hilbert problems and this is in fact how we construct the new transformation.
Funder
European Research Council
Vetenskapsrådet
Reference36 articles.
1. Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond;Boussinesq J;J Math Pures Appl,1872
2. Boussinesq's equation on the circle
3. Destruction of stationary solutions and collapse in the nonlinear string equation
4. Lecture Notes in Math.;Scott AC,1976
5. Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献