Soliton–mean field interaction in Korteweg–de Vries dispersive hydrodynamics

Author:

Ablowitz Mark J.1,Cole Justin T.2,El Gennady A.3ORCID,Hoefer Mark A.1ORCID,Luo Xu‐Dan4

Affiliation:

1. Department of Applied Mathematics University of Colorado Boulder Colorado USA

2. Department of Mathematics University of Colorado Colorado Springs Colorado USA

3. Department of Mathematics, Physics, and Electrical Engineering Northumbria University Newcastle upon Tyne United Kingdom

4. Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China

Abstract

AbstractThe mathematical description of localized solitons in the presence of large‐scale waves is a fundamental problem in nonlinear science, with applications in fluid dynamics, nonlinear optics, and condensed matter physics. Here, the evolution of a soliton as it interacts with a rarefaction wave or a dispersive shock wave, examples of slowly varying and rapidly oscillating dispersive mean fields, for the Korteweg–de Vries equation is studied. Step boundary conditions give rise to either a rarefaction wave (step up) or a dispersive shock wave (step down). When a soliton interacts with one of these mean fields, it can either transmit through (tunnel) or become embedded (trapped) inside, depending on its initial amplitude and position. A topical review of three separate analytical approaches is undertaken to describe these interactions. First, a basic soliton perturbation theory is introduced that is found to capture the solution dynamics for soliton–rarefaction wave interaction in the small dispersion limit. Next, multiphase Whitham modulation theory and its finite‐gap description are used to describe soliton–rarefaction wave and soliton–dispersive shock wave interactions. Lastly, a spectral description and an exact solution of the initial value problem is obtained through the inverse scattering transform. For transmitted solitons, far‐field asymptotics reveal the soliton phase shift through either type of wave mentioned above. In the trapped case, there is no proper eigenvalue in the spectral description, implying that the evolution does not involve a proper soliton solution. These approaches are consistent, agree with direct numerical simulation, and accurately describe different aspects of solitary wave–mean field interaction.

Funder

Engineering and Physical Sciences Research Council

National Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3