Numerical study of the Amick–Schonbek system

Author:

Klein Christian12ORCID,Saut Jean‐Claude3

Affiliation:

1. Institut de Mathématiques de Bourgogne Université de Bourgogne Dijon Cedex France

2. Institut Universitaire de France

3. Laboratoire de Mathématiques Université Paris‐Saclay et CNRS Orsay France

Abstract

AbstractThe aim of this paper is to present a survey and a detailed numerical study on a remarkable Boussinesq system describing weakly nonlinear, long surface water waves. In the one‐dimensional case, this system can be viewed as a dispersive perturbation of the hyperbolic Saint‐Venant (shallow water) system. The asymptotic stability of the solitary waves is numerically established. Blow‐up of solutions for initial data not satisfying the noncavitation condition as well as the appearance of dispersive shock waves are studied.

Funder

Horizon 2020

Publisher

Wiley

Reference38 articles.

1. Long Wave Approximations for Water Waves

2. Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory

3. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory

4. Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communicant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond;Boussinesq J;J Math Pures Appl,1872

5. Worlds of Flow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3