Antibacterial mechanism and structure–activity relationships of Bombyx mori cecropin A

Author:

Tian Yuyuan123ORCID,Wei Hongxian4,Lu Fuping4,Wu Huazhou4,Lou Dezhao4,Wang Shuchang4,Geng Tao4ORCID

Affiliation:

1. State Key Laboratory of Green Pesticide Guizhou University Guiyang China

2. Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guizhou University Guiyang China

3. Center for R&D of Fine Chemicals Guizhou University Guiyang China

4. Institute of Environment and Plant Protection Chinese Academy of Tropical Agricultural Sciences Haikou China

Abstract

AbstractBombyx mori cecropin A (Bmcecropin A) has antibacterial, antiviral, anti‐filamentous fungal and tumour cell inhibition activities and is considered a potential succedaneum for antibiotics. We clarified the antibacterial mechanism and structure–activity relationships and then directed the structure–activity optimization of Bmcecropin A. Firstly, we found Bmcecropin A shows a strong binding force and permeability to cell membranes like a detergent; Bmcecropin A could competitively bind to the cell membrane with the cell membrane‐specific dye DiI, then damaged the membrane for the access of DiI into the cytoplasm and leading to the leakage of electrolyte and proteins. Secondly, we found Bmcopropin A could also bind to and degrade DNA; furthermore, DNA library polymerase chain reaction (PCR) results indicated that Bmcecropin A inhibited DNA replication by non‐specific binding. In addition, we have identified C‐terminus amidation and serine‐lysine‐ glycine (SLG) amino acids of Bmcecropin A played critical roles in the membrane damage and DNA degradation. Based on the above results, we designed a mutant of Bmcecropin A (E9 to H, D17 to K, K33 to A), which showed higher antibacterial activity, thermostability and pH stability than ampicillin but no haemolytic activity. Finally, we speculated that Bmcecropin A damaged the cell membrane through a carpet model and drew the schematic diagram of its antibacterial mechanism, based on the antibacterial mechanism and the three‐dimensional configuration. These findings yield insights into the mechanism of antimicrobial peptide–pathogen interaction and beneficial for the development of new antibiotics.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3