Global population genetic structure and lineage differentiation of the stable fly, Stomoxys calcitrans

Author:

Tsai Cheng‐Lung12ORCID,Lu Chia‐Ning1,Tzeng Hau‐You1ORCID,Krafsur Elliot S.3,Tu Wu‐Chun1,Yeh Wen‐Bin1ORCID

Affiliation:

1. Department of Entomology National Chung Hsing University Taichung City Taiwan

2. Department of Biomedical Science and Environmental Biology Kaohsiung Medical University Kaohsiung City Taiwan

3. Department of Entomology Iowa State University Ames Iowa USA

Abstract

AbstractThe bloodsucking fly, Stomoxys calcitrans (Diptera: Muscidae), is a cosmopolitan pest that transmits potential pathogens mechanically. We conduct phylogeographic analyses of S. calcitrans to resolve its global population genetic structure for establishing baseline of molecular studies. Results from mitochondrial gene suggested that the major divergence of S. calcitrans predominantly occurred 0.32–0.47 million years ago (Mya) and the subsequent diversifications took place during 0.13–0.27 Mya. The Ethiopian region was deduced as the most likely origin of S. calcitrans and the Nearctic lineages were considered to have originated from Oriental or Palaearctic regions. Our results further revealed that each biogeographic region of S. calcitrans likely maintains its genetic specialty, and yet, those non‐monophyletic relationships were possibly caused by ancestral retention, dispersal with mammals, long‐distance migration, and the international livestock industries. Moreover, the three highly diverged Ethiopian lineages may be putative cryptic species that require clarification of their veterinary importance. Unravelling the genetic structure of stable fly and preventing gene flow among biogeographic regions through anthropogenic activities are thus pivotal in livestock industry administration, particularly genetic exchange among differentiated lineages that might lead to the consequence of ecological trait alterations.

Publisher

Wiley

Subject

Insect Science,General Veterinary,Ecology, Evolution, Behavior and Systematics,Parasitology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3