Lifting Scheme for Streamflow Data in River Networks

Author:

Park Seoncheol1,Oh Hee-Seok2

Affiliation:

1. Department of Information Statistics, Chungbuk National University , Cheongju , Korea

2. Department of Statistics, Seoul National University , Seoul , Korea

Abstract

Abstract This paper presents a new multiscale method for analysing water pollutant data located in river networks. The main idea of the proposed method is to adapt the conventional lifting scheme, reflecting the characteristics of streamflow data in the river network domain. Due to the complexity of the data domain structure, it is difficult to apply the lifting scheme to the streamflow data directly. To solve this problem, we propose a new lifting scheme algorithm for streamflow data that incorporates flow-adaptive neighbourhood selection, flow proportional weight generation and flow-length adaptive removal point selection. A nondecimated version of the proposed lifting scheme is also provided. The simulation study demonstrates that the proposed method successfully performs a multiscale analysis of streamflow data. Furthermore, we provide a real data analysis of water pollutant data observed on the Geum-River basin compared to the existing smoothing method.

Funder

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference15 articles.

1. Spatial prediction on a river network;Cressie;Journal of Agricultural, Biological, and Environmental Statistics,2006

2. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste;Dubber;Journal of Environmental Science and Health,2010

3. Flow-directed PCA for monitoring networks;Gallacher;Environmetrics,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3