Bayesian Nonparametric Modelling of Multiple Graphs with an Application to Ethnic Metabolic Differences

Author:

Molinari Marco12,Cremaschi Andrea34,De Iorio Maria567891011,Chaturvedi Nishi12132,Hughes Alun D.12132,Tillin Therese12132

Affiliation:

1. Department of Statistical Science , London , UK

2. UCL , London , UK

3. Singapore Institute of Clinical Sciences , Singapore , Singapore

4. Agency for Science, Technology and Research , Singapore , Singapore

5. Department of Statistical Science , London , UK , Singapore , Singapore , Singapore , Singapore , Singapore , Singapore

6. UCL , London , UK , Singapore , Singapore , Singapore , Singapore , Singapore , Singapore

7. Singapore Institute of Clinical Sciences , London , UK , Singapore , Singapore , Singapore , Singapore , Singapore , Singapore

8. Agency for Science, Technology and Research , London , UK , Singapore , Singapore , Singapore , Singapore , Singapore , Singapore

9. Yong Loo Lin School of Medicine , London , UK , Singapore , Singapore , Singapore , Singapore , Singapore , Singapore

10. National University of Singapore , London , UK , Singapore , Singapore , Singapore , Singapore , Singapore , Singapore

11. Yale-NUS College , London , UK , Singapore , Singapore , Singapore , Singapore , Singapore , Singapore

12. Department of Population Science & Experimental Medicine , London , UK

13. Institute of Cardiovascular Science , London , UK

Abstract

Abstract We propose a novel approach to the estimation of multiple Gaussian graphical models (GGMs) to analyse patterns of association among a set of metabolites, under different conditions. Our motivating application is the SABRE (Southall And Brent REvisited) study, a triethnic cohort study conducted in the United Kingdom. Through joint modelling of pattern of association corresponding to different ethnic groups, we are able to identify potential ethnic differences in metabolite levels and associations, with the aim of gaining a better understanding of different risk of cardiometabolic disorders across ethnicities. We model the relationship between a set of metabolites and a set of covariates through a sparse seemingly unrelated regressions model and we use GGMs to represent the conditional dependence structure among metabolites. We specify a dependent generalised Dirichlet process prior on the edge inclusion probabilities to borrow strength across groups and we adopt the horseshoe prior to identify important biomarkers. Inference is performed via Markov chain Monte Carlo.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference55 articles.

1. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems;Antoniak;The Annals of Statistics,1974

2. Middle-aged overweight south asian men exhibit a different metabolic adaptation to short-term energy restriction compared with europeans;Bakker;Diabetologia,2015

3. Dependent generalized Dirichlet process priors for the analysis of acute lymphoblastic leukemia;Barcella;Biostatistics,2017

4. Joint high-dimensional bayesian variable and covariance selection with an application to eqtl analysis;Bhadra;Biometrics,2013

5. Targeted fused ridge estimation of inverse covariance matrices from multiple high-dimensional data classes;Bilgrau;Journal of Machine Learning Research,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3