Ligand dose‐dependent activation of signaling pathways through the gustatory receptor NlGr11 linked to feeding efficacy in Nilaparvata lugens

Author:

Chen Wei‐Wen1ORCID,Lin Kai1,Lv Jun1,Su Qin1,Zhang Meng‐Yi1,Kang Kui2,Zhang Wen‐Qing1ORCID

Affiliation:

1. State Key Laboratory of Biocontrol and School of Life Sciences Sun Yat‐sen University Guangzhou China

2. College of Biology and Agriculture Zunyi Normal University Zunyi Guizhou Province China

Abstract

AbstractInsects often face both conditions with sufficient nutrients and conditions of undernutrition in the field. Through gustatory receptors, insects sense nutrients and regulate their physiological functions such as feeding and reproduction. However, it remains unclear whether signaling pathways activated by gustatory receptors depend on the concentration of nutrients and whether the difference in signaling pathways directly affects insects’ physiological functions. Herein, we found that a sugar gustatory receptor, NlGr11, from the brown planthopper (BPH), Nilaparvata lugens, activated G protein‐coupled signaling and ionotropic pathways when bound to high galactose concentration. BPHs subsequently demonstrated longer feeding times, feeding loads, and higher vitellogenin (NlVg) expression than BPHs exposed to high galactose concentrations, which only activated the ionotropic pathway. For the first time, our findings link plant nutrient conditions, signaling pathways activated by nutrients, and their gustatory receptors, and nutrient dose‐dependent feeding efficacy and vitellogenin (Vg) expression in an insect. This will help us to better understand the molecular mechanism for insect feeding strategies on plants at different stages of nutritional conditions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Insect Science,General Biochemistry, Genetics and Molecular Biology,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3