An electropenetrography waveform library for the probing and ingestion behaviors of Culex tarsalis on human hands

Author:

Cooper Anastasia M. W.1ORCID,Jameson Samuel B.2,Pickens Victoria1,Osborne Cameron1,Backus Elaine A.3,Silver Kristopher1,Mitzel Dana N.4ORCID

Affiliation:

1. Department of Entomology Kansas State University Manhattan Kansas USA

2. Department of Tropical Medicine Tulane University School of Public Health and Tropical Medicine New Orleans, Los Angeles USA

3. USDA Agricultural Research Service San Joaquin Valley Agricultural Sciences Center Parlier California USA

4. National Bio and Agro‐Defense Facility USDA Agricultural Research Service Manhattan Kansas USA

Abstract

AbstractCulex tarsalis Coquillett (Diptera: Culicidae) mosquitoes are capable of vectoring numerous pathogens affecting public and animal health. Unfortunately, the probing behaviors of mosquitoes are poorly understood because they occur in opaque tissues. Electropenetrography (EPG) has the potential to elucidate these behaviors by recording the electrical signals generated during probing. We used an AC–DC EPG with variable input resistors (Ri levels) to construct a waveform library for Cx. tarsalis feeding on human hands. Biological events associated with mosquito probing were used to characterize waveforms at four Ri levels and with two electrical current types. The optimal settings for EPG recordings of Cx. tarsalis probing on human hands was an Ri level of 107 Ohms using an applied signal of 150 millivolts alternating current. Waveforms for Cx. tarsalis included those previously observed and associated with probing behaviors in Aedes aegypti L. (Diptera: Culicidae): waveform families J (surface salivation), K (stylet penetration through the skin), L (types 1 and 2, search for a blood vessel/ingestion site), M (types 1 and 2, ingestion), N (type 1, an unknown behavior which may be a resting and digestion phase), and W (withdrawal). However, we also observed variations in the waveforms not described in Ae. aegypti, which we named types L3, M3, M4, and N2. This investigation enhances our understanding of mosquito probing behaviors. It also provides a new tool for the automated calculation of peak frequency. This work will facilitate future pathogen acquisition and transmission studies and help identify new pest and disease management targets.

Funder

Agricultural Research Service

Publisher

Wiley

Subject

Insect Science,General Biochemistry, Genetics and Molecular Biology,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3