The cluster digging behavior of larvae confers trophic benefits to fitness in insects

Author:

Wu Yujie12,Wang Qiang3,Yang Weikang1,Zhang Sheng1,Mao Chuan‐Xi4,He Nana1,Zhou Shaojie1,Zhou Chuanming1,Liu Wei1ORCID

Affiliation:

1. School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management Anhui Province Engineering Laboratory for Green Pesticide Development and Application Hefei China

2. College of Plant Protection Nanjing Agricultural University Nanjing China

3. School of Teacher Education Nanjing Xiaozhuang University Nanjing China

4. State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High‐throughput Drug Screening Technology School of Life Science, Hubei University Wuhan China

Abstract

AbstractCollective behaviors efficiently impart benefits to a diversity of species ranging from bacteria to humans. Fly larvae tend to cluster and form coordinated digging groups under crowded conditions, yet understanding the rules governing this behavior is in its infancy. We primarily took advantage of the Drosophila model to investigate cooperative foraging behavior. Here, we report that Drosophila‐related species and the black soldier fly have evolved a conserved strategy of cluster digging in food foraging. Subsequently, we investigated relative factors, including larval stage, population density, and food stiffness and quality, that affect the cluster digging behavior. Remarkably, oxygen supply through the posterior breathing spiracles is necessary for the organization of digging clusters. More importantly, we theoretically devise a mathematical model to accurately calculate how the cluster digging behavior expands food resources by diving depth, cross‐section area, and food volume. We found that cluster digging behavior approximately increases 2.2 fold depth, 1.7‐fold cross‐section area, and 1.9 fold volume than control groups, respectively. Amplification of food sources significantly facilitates survival, larval development, and reproductive success of Drosophila challenged with competition for limited food resources, thereby conferring trophic benefits to fitness in insects. Overall, our findings highlight that the cluster digging behavior is a pivotal behavior for their adaptation to food scarcity, advancing a better understanding of how this cooperative behavior confers fitness benefits in the animal kingdom.

Publisher

Wiley

Subject

Insect Science,General Biochemistry, Genetics and Molecular Biology,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3