Magnaporthe oryzae infection triggers rice resistance to brown planthopper through the influence of jasmonic acid on the flavonoid biosynthesis pathway

Author:

Chen Su1ORCID,Tao Zhihuan2,Shen Yanjie2,Yang Rui1,Yan Siyuan1,Chen Zixu3,Sun Bo4,Yang Xiaofang2

Affiliation:

1. Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision Medicine Jining Medical University Jining Shandong Province China

2. Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology, Chinese Academy of Sciences Shanghai China

3. College of Medical Engineering & The Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining Shandong Province China

4. Institute of Bioengineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China

Abstract

AbstractIn agroecosystems, plants are constantly exposed to attack from diverse herbivorous insects and microbes, and infestation with one species may change the plant defense response to other species. In our investigation of the relationships among rice plants, the brown planthopper Nilaparvata lugens (Stål) and the rice blast fungus Magnaporthe oryzae, we observed a significant increase in the resistance of rice treated with rice blast to N. lugens, as evidenced by improved plant survival rates in a small population resistance study. Subsequent transcriptome data analysis revealed that the rice blast fungus can induce the expression of genes in the jasmonic acid (JA) and flavonoid pathways. Similar to the flavonoid pathway, the JA pathway also contains 2 types of genes that exhibit similar and opposite trends in response to N. lugens and rice blast. Among these genes, the osjaz1 mutant and the osmyc2 mutant were phenotypically confirmed to positively and negatively regulate rice resistance to N. lugens and rice blast, respectively. Subsequent mass spectrometry and quantification experiments showed that the exogenous application of methyl jasmonate (MeJA) can induce the accumulation of eriodictyol, naringenin and quercetin, as well as the expression of OsF3H, Os4CL5 and OsCHI in the flavonoid pathway. This suggests a close connection between the JA pathway and the flavonoid pathway. However, OsF3'H, which negatively regulates rice resistance to N. lugens and rice blast, did not show increased expression. Phenotypic and molecular experiments confirmed that OsMYC2 can bind to and inhibit the expression of OsF3'H, thus revealing the mechanism of rice resistance to N. lugens after treatment with rice blast. These findings will deepen our understanding of the interactions among rice, N. lugens and rice blast.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3