Population‐specific effects of temperature and photoperiod on development and body mass in Cassida vibex (Coleoptera: Chrysomelidae)

Author:

Kutcherov Dmitry1ORCID,Lopatina Elena B.1

Affiliation:

1. Department of Entomology St. Petersburg State University St. Petersburg Russia

Abstract

AbstractAn interplay of genetic divergence and phenotypic plasticity in shaping geographic variation is increasingly receiving attention in the entomological literature. Two major environmental variables that govern life histories are temperature and photoperiod. Studies of thermal and photoperiodic reaction norms help us understand how insect diversity evolved and how insects respond to environmental change. We studied survival, development, and body mass in three geographic populations of the beetle Cassida vibex reared in the laboratory under several combinations of constant temperature (16, 19, 22, 25, and 28 °C) and photoperiod (short‐day and long‐day). The three collection sites are situated along a climatic gradient and separated by hundreds of kilometers. Each population subtly but significantly differs in the absolute values of survival rate, developmental rate, and body mass as well as in the thermal and photoperiodic plasticity of these traits, but the geographic differences do not form a latitudinal cline. The southernmost population from a relatively warm climate survives worse at low temperatures than the other two, but the overall survival is lowest in the latitudinally intermediate population. Short‐day conditions tend to accelerate postembryonic development and increase the slope of the developmental rate–temperature relationship, especially so in the intermediate population, followed by the southernmost population and then by the northernmost population. The latter, which inhabits a harsh climate, has the fastest and most temperature‐sensitive development, regardless of photoperiod, and attains the largest body mass among the three populations. The intermediately located and photoperiodically plastic population, which lives in a cool but mild climate, in contrast, has the smallest body size. Hence, although the importance of short‐day conditions as a seasonal cue increases poleward, the photoperiodic responses do not always become more pronounced in colder, high‐latitude environments. Our results emphasize that insect life‐history traits can exhibit quite sophisticated patterns of variation along climatic gradients.

Funder

Russian Foundation for Basic Research

Saint Petersburg State University

Publisher

Wiley

Subject

Insect Science,General Biochemistry, Genetics and Molecular Biology,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3