Black soldier fly (Diptera: Stratiomyidae) larval heat generation and management

Author:

Li Chujun123ORCID,Addeo Nicola F.4,Rusch Travis W.1,Tarone Aaron M.1,Tomberlin Jeffery K.1

Affiliation:

1. Department of Entomology Texas A&M University College Station Texas

2. State Key Laboratory of Biocontrol, School of Life Science Sun Yat‐sen University Guangzhou China

3. Guangzhou Unique Biotechnology Co., Ltd Guangzhou China

4. Department of Veterinary Medicine and Animal Production University of Napoli Federico II Napoli Italy

Abstract

AbstractMass production of black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), larvae results in massive heat generation, which impacts facility management, waste conversion, and larval production. We tested daily substrate temperatures with different population densities (i.e., 0, 500, 1000, 5000, and 10 000 larvae/pan), different population sizes (i.e., 166, 1000, and 10 000 larvae at a fixed feed ratio) and air temperatures (i.e., 20 and 30 °C) on various production parameters. Impacts of shifting larvae from 30 to 20 °C on either day 9 or 11 were also determined. Larval activity increased substrate temperatures significantly (i.e., at least 10 °C above air temperatures). Low air temperature favored growth with the higher population sizes while high temperature favored growth with low population sizes. The greatest average individual larval weights (e.g., 0.126 and 0.124 g) and feed conversion ratios (e.g., 1.92 and 2.08 g/g) were recorded for either 10 000 larvae reared at 20 °C or 100 larvae reared at 30 °C. Shifting temperatures from high (30 °C) to low (20 °C) in between (∼10‐d‐old larvae) impacted larval production weights (16% increases) and feed conversion ratios (increased 14%). Facilities should consider the impact of larval density, population size, and air temperature during black soldier fly mass production as these factors impact overall larval production.

Publisher

Wiley

Subject

Insect Science,General Biochemistry, Genetics and Molecular Biology,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3