Characterization of an odor permeable membrane device for the storage of explosives and use as canine training aids

Author:

Davis Kymeri1,Reavis Madison2,Goodpaster John V.12

Affiliation:

1. Department of Chemistry & Chemical Biology Indiana University – Purdue University Indianapolis Indianapolis Indiana USA

2. Forensic & Investigative Sciences Program Indiana University – Purdue University Indianapolis Indianapolis Indiana USA

Abstract

AbstractThe storage and use of explosives is regulated at the state and federal level, with a particular focus on physical security and rigorous accounting of the explosive inventory. For those working with explosives for the training and testing of explosive‐detecting canines, cross‐contamination is an important concern. Hence, explosives intended for use with canine teams must be placed into secondary storage containers that are new, clean, and airtight. A variety of containers meet these requirements and include screw‐top glass jars (e.g., mason jars). However, an additional need from the explosive‐detecting canine community is secondary containers that can also be used as training aids whereby the volatiles emitted by explosives are emitted in a predictable and stable manner. Currently, a generally accepted method for the storage of explosives and controlled emission of explosive vapor for canine detection does not exist. Ideally, such containers should allow odor to escape from the training aid but block external contaminates such as particulates or other volatiles. One method in use places the explosive inside a permeable cotton bag when in use for training and then stores the cotton bag inside an impermeable nylon bag for long‐term storage. This paper describes the testing of an odor permeable membrane device (OPMD) as a new way to store and deploy training aids. We measured the evaporation rate and flux of various liquid explosives and volatile compounds that have been identified in the headspace of actual explosives. OPMDs were used in addition to traditional storage containers to monitor the contamination and degradation of 14 explosives used as canine training aids. Explosives were stored individually using traditional storage bags or inside an OPMD at two locations, one of which actively used the training aids. Samples from each storage type at both locations were collected at 0, 3, 6, and 9 months and analyzed using Fourier Transform Infrared (FTIR) Spectroscopy and Gas Chromatography–Mass Spectrometry (GC–MS) with Solid‐Phase Microextraction (SPME). FTIR analyses showed no signs of degradation. GC–MS identified cross‐contamination from ethylene glycol dinitrate (EGDN) and/or 2,3‐dimethyl‐2,3‐dinitrobutane (DMNB) across almost all samples regardless of storage condition. The contamination was found to be higher among training aids that were stored in traditional ways and that were in active use by canine teams.

Funder

U.S. Department of Defense

Publisher

Wiley

Subject

Genetics,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3