Validation of the InnoXtractDNA extraction method for bone, teeth, and rootless hair

Author:

Sinha Sudhir K.1ORCID,Brown Hiromi1,Holt Hailey1,Khan Mah‐ro1,Sgueglia Joanne B.1,Murphy Gina1

Affiliation:

1. InnoGenomics Technologies LLC 2000 Lakeshore Drive, #5016 New Orleans Louisiana 70148 USA

Abstract

AbstractForensic casework samples often include human hairs, teeth, and bones. Hairs with roots are routinely processed for DNA analysis, while rootless hairs are either not tested or processed using mitochondrial DNA. Bones and teeth are submitted for human remains identifications for missing persons and mass disaster cases. DNA extraction from these low templates and degraded samples is challenging. The new InnoXtract DNA extraction method utilizes magnetic beads that are optimized to bind small DNA fragments, as small as 100 base pairs, to purify high‐yield DNA from compromised samples. This validation study evaluates InnoXtract's ability to obtain amplifiable DNA from samples such as rootless hairs and skeletal remains. Studies performed include sensitivity, stability, repeatability, reproducibility, non‐probative samples, and comparison to standard organic extractions. Sensitivity studies demonstrate average yield recoveries ranging from 53% to 100% and 73% to 85% for the InnoXtract hair and bone methods, respectively. Studies demonstrate consistent results across a range of sample types, such as insulted and un‐insulted bone and teeth, as well as hair shafts from donors of various ages, gender, race, and hair characteristics. The InnoXtract bone method outperformed organic extraction. The method was successfully automated on a MagMAX™ Express‐96, with recoveries over 70% relative to the manual version. InnoXtract has the potential as an automated high‐throughput, high‐yield bone extraction method with 6 h of total extraction time for up to 96 samples. The validation study results demonstrate that the InnoXtract kits produce high‐yield and high‐quality DNA from compromised bone, teeth, and hair shaft samples.

Publisher

Wiley

Subject

Genetics,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3