Postmortem chondrocyte viability in porcine articular cartilage: Influence of time, temperature, and burial under winter conditions

Author:

Cvetko Marko1,Knific Tanja2,Frangež Robert3,Motaln Helena4,Rogelj Boris45,Alibegović Armin6,Gombač Mitja1

Affiliation:

1. Veterinary Faculty, Institute for Pathology, Wild Animals, Fish and Bees University of Ljubljana Ljubljana Slovenia

2. Veterinary Faculty, Institute of Food Safety, Feed and Environment University of Ljubljana Ljubljana Slovenija

3. Veterinary Faculty, Institute of Preclinical Sciences University of Ljubljana Ljubljana Slovenija

4. Department of Biotechnology Jozef Stefan Institute Ljubljana Slovenia

5. Faculty of Chemistry and Chemical Technology University of Ljubljana Ljubljana Slovenia

6. Faculty of Medicine, Department of Forensic Medicine and Deontology University of Ljubljana Ljubljana Slovenia

Abstract

AbstractThe aim of the present study was to investigate the effects of time, temperature, and burial in a natural environment on the viability of chondrocytes in porcine femoral condyles using confocal laser scanning microscopy. Hind trotters from 10 pigs were buried or left unburied. Samples were collected daily and stained with a combination of vital dyes (calcein‐AM and ethidium homodimer‐1). The chondrocytes showed an intense staining corresponding to their vitality. In the first 3 days, viability decreased slowly and showed no statistical difference between buried and unburied samples. After the first 3 days, it decreased rapidly, with the viability of the buried samples being 66% on day 4, decreasing to 25% on day 8 and to 16% on day 10, while in the unburied samples it decreased to 43% on day 4, 13% on day 8 and 5% on day 10. Our results indicate a time, temperature, and burial dependent decrease in chondrocyte viability and suggest the use of chondrocyte viability as a marker for estimating PMI in both the natural environment and in animals, as well as its potential use in humans.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3