Synthesis, structure, in vitro pharmacology, and in vivo activity of trans‐3,4‐dichloro‐N‐[[1‐(dimethylamino)‐4‐phenylcyclohexyl]methyl]‐benzamide (AP01; 4‐phenyl‐AH‐7921), a novel mixed μ‐/κ‐opioid

Author:

Krstenansky John L.1ORCID,Bacsa John2,Zambon Alexander1

Affiliation:

1. Keck Graduate Institute Claremont California USA

2. Emory University Atlanta Georgia USA

Abstract

AbstractAnalogs of non‐fentanyl novel synthetic opioids (NSO) with modifications that fall outside of established structure–activity relationships (SARs) for that class of drugs create the question whether or not it should be considered an analog, as defined by 21 U.S.C. §802(32)(A), which is important for its inclusion in the US system of drug scheduling. AH‐7921 is a US Schedule I drug and an example of the 1‐benzamidomethyl‐1‐cyclohexyldialkylamine class of NSO. The SARs regarding substitution of the central cyclohexyl ring have not been well characterized in the literature. Therefore, in order to expand the SAR surrounding AH‐7921 analogs, trans‐3,4‐dichloro‐N‐[[1‐(dimethylamino)‐4‐phenylcyclohexyl]methyl]‐benzamide (AP01; 4‐phenyl‐AH‐7921) has been synthesized, analytically characterized, and tested in vitro and in vivo pharmacologically. Using methods described in the original patents for this class of NSO, it was found that the single trans geometric isomer was obtained. The proton nuclear magnetic resonance, mass spectrum, infrared spectrum, and Raman spectrum are reported along with the melting point of the hydrochloride salt. In vitro binding to a battery of 43 central nervous system receptors showed it to be a high‐affinity μ‐opioid receptor (MOR) and κ‐opioid receptor (KOR) ligand (60 nM and 34 nM, respectively). AP01 also had a 4 nM affinity for the serotonin transporter (SERT), which is a higher level of potency at this receptor than most other opioids. In rats, it exhibited antinociception in the acetic acid writhing test. Therefore, the 4‐phenyl modification results in an active NSO, but carries with it potential toxicities beyond those expected for currently approved opioid drugs.

Funder

National Institute of Justice

Publisher

Wiley

Subject

Genetics,Pathology and Forensic Medicine

Reference22 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3