Visualization of latent fingerprints using fluorescence lifetime imaging on paper emitting strong fluorescence

Author:

Kakuda Hidetoshi1,Akiba Norimitsu1,Hibino Kazuhito2,Tsuchiya Ken’ichi1,Tanabe Kosuke1,Shibasaki Kazunari3

Affiliation:

1. Physics Section National Research Institute of Police Science Chiba Japan

2. Criminal Identification Division National Police Agency Tokyo Japan

3. Forensic Science Lab Chiba Japan

Abstract

AbstractLatent fingerprints were successfully visualized using fluorescence lifetime imaging (FLIM) on paper which emits strong fluorescence with a lifetime close to that of fingerprints and thus from which it is difficult for time‐resolved spectroscopy to visualize fingerprints. Latent fingerprint samples on paper were excited using a 450 nm or 532 nm nanosecond pulsed‐laser, and time‐resolved fluorescence images were obtained at a delay time of 6–16 ns in intervals of 1 ns, to the excitation pulse. The excitation beam was expanded using a lens, and the fluorescence from the fingerprints was captured using an intensified CCD camera. Because of the large fluorescence intensity of the background paper of approximately two to four orders of magnitude larger than that of the fingerprint, the fingerprint was not visualized on each fluorescence image by time‐resolved spectroscopy. However, the fingerprint was visualized in a FLIM image constructed using a series of the fluorescence images for the case with the fluorescence intensity of the background paper being four orders of magnitude larger than that of the fingerprint. The difference in fluorescence lifetime in the FLIM image of the visualized fingerprint and background paper was in the order of 0.1 ns, which was an order of magnitude smaller than the inherent fluorescence lifetime of a few nanoseconds for the fingerprints and paper. It was demonstrated that, at a background fluorescence intensity with a certain order of magnitude larger than that of fingerprints, FLIM has the potential to visualize latent fingerprints which cannot be visualized by time‐resolved spectroscopy.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Genetics,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3