Affiliation:
1. Institute of Environmental Science and Research Limited Auckland New Zealand
2. Department of Statistics University of Auckland Auckland New Zealand
Abstract
AbstractCrimes, such as robbery and murder, often involve firearms. In order to assist with the investigation into the crime, firearm examiners are asked to determine whether cartridge cases found at a crime scene had been fired from a suspect's firearm. This examination is based on a comparison of the marks left on the surfaces of cartridge cases. Firing pin impressions can be one of the most commonly used of these marks. In this study, a total of nine Ruger model 10/22 semiautomatic rifles were used. Fifty cartridges were fired from each rifle. The cartridge cases were collected, and each firing pin impression was then cast and photographed using a comparison microscope. In this paper, we will describe how one may use a computer vision algorithm, the Histogram of Orientated Gradient (HOG), and a machine learning method, Support Vector Machines (SVMs), to classify images of firing pin impressions. Our method achieved a reasonably high accuracy at 93%. This can be used to associate a firearm with a cartridge case recovered from a scene. We also compared our method with other feature extraction algorithms. The comparison results showed that the HOG‐SVM method had the highest performance in this classification task.
Subject
Genetics,Pathology and Forensic Medicine
Reference37 articles.
1. A survey of image processing techniques and statistics for ballistic specimens in forensic science
2. Theory of identification, range of striae comparison reports and modified glossary definitions—an AFTE criteria for identification committee report;Murdock J;AFTE J,1990
3. Automated firearms evidence comparison using the Integrated Ballistic Identification System (IBIS)
4. Fireball: a forensic ballistics imaging system
5. Proposed NIST ballistics identification system (NBIS) based on 3D topography measurements on correlation cells;Song J;AFTE J.,2013