Surface‐enhanced Raman spectroscopy enables confirmatory detection of dyes on hair submerged in hypolimnion water for up to twelve weeks

Author:

Holman Aidan P.12,Kurouski Dmitry234ORCID

Affiliation:

1. Department of Entomology Texas A&M University College Station Texas USA

2. Department of Biochemistry and Biophysics Texas A&M University College Station Texas USA

3. Department of Biomedical Engineering Texas A&M University College Station Texas USA

4. Institute for Advancing Health through Agriculture Texas A&M University College Station Texas USA

Abstract

AbstractDifficulties in the localization of bodies of homicidal or drowning victims in natural water result in their submergence for weeks if not months. Water insects and microbes drastically change the body's appearance, which significantly changes the determination of a victim's identity. DNA analysis is commonly used for identifying the decedent; however, this PCR‐based approach is time‐consuming and destructive of the evidence. Considering that nearly half of the people in the world dye their hair with a variety of permanent and semi‐permanent dyes, one can expect that confirmatory identification of dyes on the body's hair can be used to shed light on the victim's identity. A growing body of evidence suggests that surface‐enhanced Raman spectroscopy (SERS) can be used to detect and identify hair dyes. In this study, we investigated the extent to which SERS could be used to detect black and blue, permanent and semi‐permanent dyes on hair submerged in hypolimnion water for up to twelve weeks. We found that SERS enabled 100% accurate identification of analyzed dyes on hair submerged in hypolimnion water for up to 8 weeks, whereas, on average, 87% accurate identification of the hair dyes could be achieved on hair exposed for 10 weeks and 50% for hair exposed 12 weeks in hypolimnion water. We also found that the aqueous environment caused progressive fading of some dyes, whereas other dyes showed substantial spectral transformations after prolonged submergence. Finally, we found that changes in the intensity of vibrational bands of dyes could be used to predict the duration of submergence of colored hair in hypolimnion water.

Funder

National Institute of Justice

Publisher

Wiley

Subject

Genetics,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3