Simple tape‐stripping method for highly reliable and quantitative analysis of skin microbiome

Author:

Soga Naoki1,Nagura Risa1,Nakamura Risa1,Kohda Katsunori12,Motoyama Yumi1,Ito Masakazu1,Nakagawa Ichiro3,Nakajima Saeko45ORCID,Ikeuchi Akinori12

Affiliation:

1. Frontier Research Center, Toyota Motor Corporation Toyota Aichi Japan

2. Toyota Central R&D Labs, Inc. Nagakute Aichi Japan

3. Department of Microbiology Kyoto University Graduate School of Medicine Kyoto Japan

4. Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan

5. Department of Drug Discovery for Inflammatory Skin Diseases Kyoto University Graduate School of Medicine Kyoto Japan

Abstract

AbstractThe composition of human skin microbiome profoundly impacts host skin health and disease. However, the relationship between skin homeostasis or the development of skin diseases and daily changes in skin microbial composition is poorly understood. Longitudinal samplings at more frequent intervals would address this issue, while conventional sampling methods have technical difficulties, leading to limitations in sampling opportunities. Here, we developed a simple and stable tape‐stripping method regardless of the operator's skill. Our method enables skin microbial sampling within 30 seconds and taking multiple skin microbial samples from the same body site. The amount of microbial DNA among multiple sampling sites could be measured within 13.5%. The sequencing results of multiple sampling showed high consistency, Pearson's correlation coefficient between multiple samples of 0.98. Furthermore, these results were comparable to those collected by the conventional swabbing method. These results demonstrate that our tape‐stripping method enables simple microbiome collection and highly reliable quantitative skin microbiome analysis. These features of our method would lead to a further understanding of skin disease development or diagnosis of skin conditions in clinical research by increasing the opportunities for microbial sampling.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3